[PDF][PDF] Liquid nuclear condensates mechanically sense and restructure the genome

Y Shin, YC Chang, DSW Lee, J Berry, DW Sanders… - Cell, 2018 - cell.com
Cell, 2018cell.com
Phase transitions involving biomolecular liquids are a fundamental mechanism underlying
intracellular organization. In the cell nucleus, liquid-liquid phase separation of intrinsically
disordered proteins (IDPs) is implicated in assembly of the nucleolus, as well as
transcriptional clusters, and other nuclear bodies. However, it remains unclear whether and
how physical forces associated with nucleation, growth, and wetting of liquid condensates
can directly restructure chromatin. Here, we use CasDrop, a novel CRISPR-Cas9-based …
Summary
Phase transitions involving biomolecular liquids are a fundamental mechanism underlying intracellular organization. In the cell nucleus, liquid-liquid phase separation of intrinsically disordered proteins (IDPs) is implicated in assembly of the nucleolus, as well as transcriptional clusters, and other nuclear bodies. However, it remains unclear whether and how physical forces associated with nucleation, growth, and wetting of liquid condensates can directly restructure chromatin. Here, we use CasDrop, a novel CRISPR-Cas9-based optogenetic technology, to show that various IDPs phase separate into liquid condensates that mechanically exclude chromatin as they grow and preferentially form in low-density, largely euchromatic regions. A minimal physical model explains how this stiffness sensitivity arises from lower mechanical energy associated with deforming softer genomic regions. Targeted genomic loci can nonetheless be mechanically pulled together through surface tension-driven coalescence. Nuclear condensates may thus function as mechano-active chromatin filters, physically pulling in targeted genomic loci while pushing out non-targeted regions of the neighboring genome.
Video Abstract
cell.com