Determination and therapeutic exploitation of Ebola virus spontaneous mutation frequency

KJ Alfson, G Worwa, R Carrion Jr, A Griffiths - Journal of virology, 2016 - Am Soc Microbiol
KJ Alfson, G Worwa, R Carrion Jr, A Griffiths
Journal of virology, 2016Am Soc Microbiol
Ebola virus (EBOV) is an RNA virus that can cause hemorrhagic fever with high fatality rates,
and there are no approved vaccines or therapies. Typically, RNA viruses have high
spontaneous mutation rates, which permit rapid adaptation to selection pressures and have
other important biological consequences. However, it is unknown if filoviruses exhibit high
mutation frequencies. Ultradeep sequencing and a recombinant EBOV that carries the gene
encoding green fluorescent protein were used to determine the spontaneous mutation …
Abstract
Ebola virus (EBOV) is an RNA virus that can cause hemorrhagic fever with high fatality rates, and there are no approved vaccines or therapies. Typically, RNA viruses have high spontaneous mutation rates, which permit rapid adaptation to selection pressures and have other important biological consequences. However, it is unknown if filoviruses exhibit high mutation frequencies. Ultradeep sequencing and a recombinant EBOV that carries the gene encoding green fluorescent protein were used to determine the spontaneous mutation frequency of EBOV. The effects of the guanosine analogue ribavirin during EBOV infections were also assessed. Ultradeep sequencing revealed that the mutation frequency for EBOV was high and similar to those of other RNA viruses. Interestingly, significant genetic diversity was not observed in viable viruses, implying that changes were not well tolerated. We hypothesized that this could be exploited therapeutically. In vitro, the presence of ribavirin increased the error rate, and the 50% inhibitory concentration (IC50) was 27 μM. In a mouse model of ribavirin therapy given pre-EBOV exposure, ribavirin treatment corresponded with a significant delay in time to death and up to 75% survival. In mouse and monkey models of therapy given post-EBOV exposure, ribavirin treatment also delayed the time to death and increased survival. These results demonstrate that EBOV has a spontaneous mutation frequency similar to those of other RNA viruses. These data also suggest a potential for therapeutic use of ribavirin for human EBOV infections.
IMPORTANCE Ebola virus (EBOV) causes a severe hemorrhagic disease with high case fatality rates; there are no approved vaccines or therapies. We determined the spontaneous mutation frequency of EBOV, which is relevant to understanding the potential for the virus to adapt. The frequency was similar to those of other RNA viruses. Significant genetic diversity was not observed in viable viruses, implying that changes were not well tolerated. We hypothesized that this could be exploited therapeutically. Ribavirin is a viral mutagen approved for treatment of several virus infections; it is also cheap and readily available. In cell culture, we showed that ribavirin was effective at reducing production of infectious EBOV. In mouse and monkey models of therapy given post-EBOV exposure, ribavirin treatment delayed the time to death and increased survival. These data provide a better understanding of EBOV spontaneous mutation and suggest that ribavirin may have great value in the context of human disease.
American Society for Microbiology