Deletion of mitochondrial anchoring protects dysmyelinating shiverer: implications for progressive MS

DC Joshi, CL Zhang, TM Lin, A Gusain… - Journal of …, 2015 - Soc Neuroscience
DC Joshi, CL Zhang, TM Lin, A Gusain, MG Harris, E Tree, Y Yin, C Wu, ZH Sheng…
Journal of Neuroscience, 2015Soc Neuroscience
The demyelinating disease multiple sclerosis (MS) has an early inflammatory phase
followed by an incurable progressive phase with subdued inflammation and poorly
understood neurodegenerative mechanism. In this study, we identified various parallelisms
between progressive MS and the dysmyelinating mouse model Shiverer and then
genetically deleted a major neuron-specific mitochondrial anchoring protein Syntaphilin
(SNPH) from the mouse. Prevailing evidence suggests that deletion of SNPH is harmful in …
The demyelinating disease multiple sclerosis (MS) has an early inflammatory phase followed by an incurable progressive phase with subdued inflammation and poorly understood neurodegenerative mechanism. In this study, we identified various parallelisms between progressive MS and the dysmyelinating mouse model Shiverer and then genetically deleted a major neuron-specific mitochondrial anchoring protein Syntaphilin (SNPH) from the mouse. Prevailing evidence suggests that deletion of SNPH is harmful in demyelination. Surprisingly, SNPH deletion produces striking benefits in the Shiverer by prolonging survival, reducing cerebellar damage, suppressing oxidative stress, and improving mitochondrial health. In contrast, SNPH deletion does not benefit clinical symptoms in experimental autoimmune encephalomyelitis (EAE), a model for early-phase MS. We propose that deleting mitochondrial anchoring is a novel, specific treatment for progressive MS.
Soc Neuroscience